ISSN-L: 2544-980X

Вертолеты Будущего

Султанов Батир Каримович 1

Аннотация: Беспилотные вертолеты востребованы и эффективны. В данной статье рассмотрены летательные аппараты, которые могут применяться для доставки грузов, мониторинга местности, геологоразведки, лесоохраны, сельского хозяйства, поисковоспасательных и других работ, а также рассмотрим основные недостатки беспилотных летательных аппаратов при горизонтальном и вертикальном способе взлета.

Ключевые слова: Горизонтальный способ взлета, вертикальный способ взлета, полезная нагрузка, максимальное время полета.

Введение

Согласно российской универсальной классификации беспилотных летательных аппаратов (БЛА), которая ориентирована пока только на военное назначение аппаратов, БЛА можно систематизировать следующим образом:

микро и мини БЛА ближнего радиуса действия – взлётная масса до 5 кг, дальность действия до 25...40 км;

лёгкие БЛА малого радиуса действия – взлётная масса 5...50 кг, дальность действия 10...70 км;

лёгкие БЛА среднего радиуса действия — взлётная масса 50...100 кг, дальность действия 70...150 (250) км;

средние БЛА – взлётная масса 100...300 кг, дальность действия 150...1000 км;

средне-тяжёлые БЛА – взлётная масса 300...500 кг, дальность действия 70...300 км;

тяжёлые БЛА среднего радиуса действия – взлётная масса более 500 кг, дальность действия 70-300 км;

тяжёлые БЛА большой продолжительности полёта – взлётная масса более 1500 кг, дальность действия около 1500 км;

беспилотные боевые самолёты – взлётная масса более 500 кг, дальностью около 1500 км.

Наибольшее распространение получили два типа беспилотных летательных аппаратов – БЛА с горизонтальным способом взлета и посадки (к данному типу относятся фюзеляжные аппараты, аппараты «летающее крыло»), а также БЛА с вертикальным способом взлета и посадки мультикоптерной конструкции (трикоптеры, квадрокоптеры, гексакоптеры и так далее). Названные типы БЛА способны выполнить большинство задач – как военного назначения, так и гражданских – которые ставит перед ними человечество в текущих реалиях.

Однако есть направления, в которых названные типы БЛА не покрывают потребности человечества в полном масштабе. Основная причина такого положения вещей кроется в требованиях, которые человечество предъявляет БЛА, таких как: сочетание необходимости длительного удержания в воздухе летательного аппарата с возможностью вертикального взлета и посадки в условиях различных рельефов (гористая местность, побережье, платформы в открытом море и другие ложные условия). В гражданском направлении прежде всего речь идет о логистике, поисково-спасательной деятельности, экологическом мониторинге, сельском

-

¹ Преподователь кафедры Авиационного вооружения Военно авиационного института Республики Узбекистан

хозяйстве, геодезии и картографии, строительстве, нефтегазовом секторе и телекоммуникациях. В военном направлении к основным задачам, возлагаемым на беспилотные системы, относятся: наблюдение; выдача целеуказания и корректировка огня систем оружия; охрана мест дислокации; обеспечение действий армейской авиации в ходе огневой поддержки наземных частей; ретрансляция сигналов связи; проведение ударных операций; решение логистических, транспортных задач.

В данный момент подавляющее большинство указанных выше задач выполняют беспилотные летательные аппараты с горизонтальным способом взлета и посадки, с вертикальным способом взлета и посадки мультикоптерной конструкции. Однако такое положение дел ведет к возникновению существенных недостатков.

Беспилотные вертолеты. Решить все вышеперечисленные проблемы способны БЛА вертикального способа взлета и посадки нового типа — беспилотные вертолеты. Основное отличие данного типа аппаратов в использовании в качестве источника энергии двигателя внутреннего сгорания, что существенно увеличивает время полета летательного аппарата, объем его полезной нагрузки. Ниже приведены примеры наиболее удачных беспилотных вертолетов, которые уже успели зарекомендовать себя с лучшей стороны.

Беспилотный комплекс состоит из наземной станции управления, транспортного контейнера и БПЛА. Управление комплексом может осуществляться на расстоянии до 100 км от базовой станции. При необходимости управление БПЛА может передаваться от станции к станции, и тогда его максимальная дальность может доходить до 400 км. Продолжительность полета с полезной нагрузкой достигает 4 часов.

Этот летательный аппарат может применяться для доставки грузов, мониторинга местности, геологоразведки, лесоохраны, сельского хозяйства, поисково-спасательных и других работ. На БАС-200 возможна установка широкого перечня оборудования для мониторинга и аэрофотосъемки.

Беспилотник может нести гравиметр, магнитометр, спектрометр, гиростабилизированную оптико-электронную систему и другое оборудование для геологоразведки и мониторинга местности. В конце 2022 года он был сертифицирован по нормам летной годности. В настоящее время БАС-200 — единственный беспилотник, произведенный в России и сертифицированный по требованиям Росавиации.

Рис. 1. Беспилотный вертолет БАС 200

БАС-200 (рис. 1). Характеристики:

максимальная взлетная масса 200 кг;

масса коммерческой нагрузки 50 кг;

длина аппарата 3,9 м;

максимальная дальность полета до 430 км;

максимальная скорость до 160 км/ч;

продолжительность полета до 4ч;

практический потолок до 3900 м.

Система управления дистанционная по радиоканалу и спутниковая навигация Дальность передачи данных по каналу радиосвязи до 100 километров ВТС «Бастион».

Рис. 2. Беспилотный вертолет VRT300

VRT300 (рис. 2). Характеристики:

максимальная взлётная масса, кг 300;

масса целевой нагрузки, кг 70;

максимальная скорость, км/ч 180;

продолжительность полета, часов 5;

радиус действия, км 150;

максимальная дальность радиосвязи при прямой видимости на высоте применения БЛА, км 100.

Рис. 3. Беспилотный вертолет MQ-8 Fire Scout

MQ-8 Fire Scout (рис. 3). Характеристики:

длина = 6.98 м.

высота = 2.87 м.

диаметр несущего винта = 8,38 м.

вес нормальный = 1157 кг.

скорость максимальная = 205 км/ч.

потолок практический = 6096 м.

дальность полёта практическая = 177 км.

продолжительность полёта = 6 часов

Методика исследований.

Недостатки БЛА с горизонтального способа взлета и посадки.

Наиболее распространены в настоящее время два варианта запуска БЛА — разгон аппарата по взлетно-посадочной полосе и разгон аппарата с помощью катапультирующего устройства. В первом случае для запуска аппарата необходимо наличие взлетно-посадочной полосы достаточной длины с подходящим покрытием, что зачастую невозможно.

Кроме того, беспилотный летательный аппарат должен быть оснащен силовой установкой, достаточной для обеспечения разгона и взлета.

Во втором случае для запуска аппарата необходимо наличие катапультирующего устройства, что связано с дополнительными тратами времени и ресурсов.

Существуют также более редкие варианты запуска БЛА — беспилотный летательный аппарат выводится на рабочую высоту другим летательным аппаратом, запуск беспилотного летательного аппарата производится с помощью мускульной силы человека. Оба указанных варианта используются реже и имеют существенные недостатки. При применении способа вывода БЛА на рабочую высоту другим летательным аппаратом возникают трудности с дополнительными затратами на полет несущей техники, конструктированием и реализацией варианта крепления БЛА к корпусу несущей техники. При применении для запуска мускульной силы человека взлетная масса аппарата не должна превышать 10 - 15 килограмм (это связано с ограниченными способностями человеческого тела).

Необходимость постоянного движения.

Благодаря тому, что для продолжения полета, удержания или набора высоты БЛА самолетного типа необходимо непрерывно двигаться, возникает следующий их недостаток — отсутствие возможности удержания определенного ракурса. В ситуациях, когда цель наблюдения или

атаки находится в укрытии, визуальный доступ к ней возможен только с единственного и четко определенного ракурса, беспилотные аппараты самолетного типа не способны установить постоянную слежку за целью.

В данной ситуации беспилотный аппарат переходит на круговую траекторию полета, необходимый ракурс для слежки за целью доступен только в некотором секторе траектории. Такое положение вещей ведет к потенциальной потери контроля за целью.

Кроме того, необходимость постоянного движения БЛА приводит к возникновению следующего недостатка. Для поддержания устойчивого слежения за целью, летательный аппарат необходимо обеспечивать независимым стабилизационным подвесом для размещения на нем видеокамеры. В противном случае устойчивое слежение за целью невозможно.

Существуют и иные частные недостатки БЛА с горизонтальным способом взлета и посадки.

Например, невозможно использование узконаправленных антенных устройств для организации радиочастотного канала связи с пунктом управления.

Недостатки БЛА с вертикальным способом взлета и посадки.

Все перечисленные выше проблемы способны решить БЛА с вертикальным способом взлета и посадки. Для осуществления взлета и посадки мультикоптерам не требуется взлетная полоса — зачастую необходимо наличие небольшого (в зависимости от габаритов летательного аппарата) достаточно ровного участка местности без помех в вертикальной плоскости (деревья, линии электропередач и т.д.). Как правило, подбор подходящей площадки не отнимает много времени. Мультикоптеры также способны удерживать неподвижное положение в пространстве, что позволяет проводить непрерывное слежение за целью. Но нельзя не упомянуть и существенные недостатки БЛА с вертикальным способом взлета и посадки.

Результаты исследования.

Сравнительно малое время полета.

Подавляющее большинство БЛА с вертикальным способом взлета и посадки в настоящее время в качестве источника энергии используют аккумуляторные батареи. Время полета наиболее зависимо от следующих факторов: электрическая емкость аккумуляторных батарей на борту, мощность, потребляемая электрическими двигателями, вес аппарата с учетом полезной нагрузки. Аккумуляторные батареи могут обладать различной электрической емкостью – от сотен миллиамперчасов до десятков амперчасов. Увеличение электрической емкости путем увеличения количества аккумуляторных батарей на борту ведет к неизбежному увеличению веса летательного аппарата.

В свою очередь, увеличение веса аппарата ведет к необходимости установки электрических двигателей с большим крутящим моментом, потребляющих большую мощность для работы. Иными словами, в настоящее время, с учетом использования наиболее современных технологий, время полета БЛА мультикоптерной конструкции, использующие аккумуляторные батареи, удалось довести до следующих значений:

DJI представила дрон Matrice 300 RTK, способный проводить в воздухе 55 минут;

Impossible Aerospace представила электрический квадрокоптер US-1, способный непрерывно находиться в воздухе два часа и пролететь до 75 километров без подзарядки аккумуляторов.

Для сравнения ниже приведены рекордные показатели мультикоптеров, использующих ДВС в качестве источника энергии:

Компания Quaternium Technologies установила рекорд продолжительности полета квадрокоптеров — ее дрон провел в воздухе 10 часов 14 минут. Предыдущий рекорд принадлежал ей же и составлял 8 часов 10 минут.

Приведенные данные являются официально подтвержденными результатами замеров. Но необходимо понимать, что указанные модели являются прототипами, не предназначенными к серийному выпуску. Как видно из приведенных данных, время полета БЛА мультикоптерной конструкции, использующих аккумуляторные батареи, как источник энергии, существенно уступает времени полета летательных аппаратов с двигателем внутреннего сгорания.

Заключение

Таким образом, можно сделать вывод о том, что беспилотные вертолеты, использующие двигатель внутреннего сгорания в качестве источника энергии, способны перевозить пассажиров и грузов над землей и водной поверхностью, а также выполнения поисковоспасательных работ. Вертолеты обладает уникальными транспортными возможностями в офшорном классе. Также могут закрыть широкий спектр задач в логистике, поисковоспасательной деятельности, экологическом мониторинге, сельском хозяйстве, геодезии и картографии, строительстве, нефтегазовом секторе и телекоммуникациях, а также способны вести наблюдение;

выдачу целеуказания и корректировка огня систем оружия;

охрану мест дислокации;

обеспечение действий армейской авиации в ходе огневой поддержки наземных частей;

ретрансляцию сигналов связи;

проведение ударных операций;

решение логистических, транспортных задач. Развитие сферы беспилотных вертолетов имеет критическое значение для рынка всех беспилотных летательных аппаратов в мире.

Список литературы

- 1. Бодрова А.С., Безденежных С.И. Перспективы развития и применения комплексов с беспилотными летательными аппаратами: конф. г. Коломна, 2016. С. 106-113.
- 2. Беспилотные летательные аппараты. Справочное пособие. Воронеж: Издательство Полиграфический центр «Научная книга», 2015. 616 с.
- 3. Василин Н.Я. Беспилотные летательные аппараты. Минск: «Попурри», 2003. 272 с.