

Vol. 53 (2024): Miasto Przyszłości +62 811 2928008

1089
Miasto Przyszłości

Kielce 2024

Impact Factor: 9.9 ISSN-L: 2544-980X

Analysis of Air Pollution Levels Using Python Libraries

Jurayev Jakhongir 1, Mekhmonaliyev Yakhyobek 2

Annotation: This article aims to help those who are facing the same issues as me: working with

Python but missing the OpenAir package of R.

Keywords: Raster data structure, vector data structure, basic spatial data analysis, encoding data

structure, topological data structure.

Recently, much has been discussed about air pollution and its consequences on the environment.

These discussions always gain prominence when some of their consequences haunt the world and

leave us wondering what will be of future generations. Maybe greenhouse gases and the

consequent global warming are the most well-known names for most of the population. However,

other air pollutants cause many harmful effects to the population and end up not being well

regulated in many regions. These are the cases of particulate matter and nitrogen oxides, for

example. In large cities, these pollutants are usually emitted on a large scale by diesel vehicles

that lack proper maintenance. For a more assertive assessment of the state of pollutant

concentrations in a given region, an in-depth study of the data is necessary. For that, a couple of

years ago we started using the OpenAir package of R, which by the way is excellent. However,

over the last few months, We’ve started using Python and we’ve come to like it. But what we

miss the most about R is OpenAir.

With that in mind, we decided to develop two functions in Python, for visualizing pollutants

datasets, inspired by OpenAir of R. So, in this article, we’ll present these functions and we’ll

detail how they were developed.

It’s important to make it clear that we’re not going to deal with the analysis of local pollutants

here, but rather use the data as an example to illustrate our analysis tools. By the way, we used a

dataset from: https://qualar.cetesb.sp.gov.br/qualar/home.do, which is the agency responsible for

regulating environmental issues in the state of Sao Paulo.

What are the functions we’ve developed?

The first one is a set of plots, which we called time_variation, showing the concentration of the

pollutant by the hour, month, and day of the week, like the image below.

1 Ferghana branch of the Tashkent University of Information Technologies named after Muhammad al-Khorezmi
2 Ferghana branch of the Tashkent University of Information Technologies named after Muhammad al-Khorezmi

http://journalseeker.researchbib.com/view/issn/2544-980X

Vol. 53 (2024): Miasto Przyszłości +62 811 2928008

1090
Miasto Przyszłości

Kielce 2024

Fig-1 The second one is a calendar heatmap (calendar_dist), which points the worst days relating

to pollutant concentrations:

Fig-2

First things first. To kick off our function, we set the input variables (df, pollutant, ylabel,

hue=None), and also, we have to import the libraries.

def time_variation(df, pollutant, ylabel, hue=None):

importing all the libraries we'll need

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

As we’re going to use int values representing months and days of the week to create the charts,

we need lists of labels to replace these int values in the plots.

#setting xticklabels

week = ['mon','tue','wed','thu','fri','sat','sun']

months = ['jan','feb','mar','apr','may','jun','jul','aug','sep','oct','nov','dec']

To make our function work fine, we need to be sure the data in feature date is really in date

format. So:

converting feature date to datetime and dropping Nan values

df['date'] = pd.to_datetime(df['date'])

if hue!=None:

df = df[['date', pollutant, hue]].dropna() # dropping rows of nan vals of the chosen pollutant

else:

df = df[['date', pollutant]].dropna()

Now, we only need to plot. But wait, first let’s set the subplots. There will always be 3 subplots,

representing concentrations by the hour, month, and day of the week.

Creating graphs of pollutant concentrations by hour, month and day of week

fig,axes = plt.subplots(1, 3,sharex=False, figsize=(16,4)) #creating subplots, side by side

fig.tight_layout(pad=-2) # makeing plots get closer

Vol. 53 (2024): Miasto Przyszłości +62 811 2928008

1091
Miasto Przyszłości

Kielce 2024

sns.set_style('whitegrid')

After that, plotting the graphs is very simple. In the example below, we show the lineplot

of concentration by the hour. The others are very similar, we just have to change hours by month

or day of week.

concentration vs hour

axes[0] = sns.lineplot(ax=axes[0],data=df,

x=df['date'].dt.hour,

y=pollutant,

color='red',

linewidth=1.5,

hue=hue,

palette="hls")

axes[0].set_xticklabels(axes[0].get_xticks(), fontsize=13)

axes[0].set_yticklabels(axes[0].get_yticks(), fontsize=13)

axes[0].set_xlabel('hour', fontsize=15)

axes[0].set_ylabel(ylabel, fontsize=15)

axes[0].legend().set_title('')

concentration vs month

axes[1] = sns.lineplot(ax=axes[1],

data=df,

x=df['date'].dt.month,

y=pollutant,

color='red',

linewidth=1.5,

hue=hue,

palette="hls")

axes[1].set_xticks(np.arange(1, 13, 1))

axes[1].set_xticklabels(months, fontsize=13)

axes[1].set_yticklabels('')

axes[1].set_xlabel('month', fontsize=15)

axes[1].set_ylabel('')

axes[1].legend().set_title('')

concentration vs day of week

axes[2] = sns.lineplot(ax=axes[2],

data=df,

x=df['date'].dt.dayofweek,

Vol. 53 (2024): Miasto Przyszłości +62 811 2928008

1092
Miasto Przyszłości

Kielce 2024

y=pollutant,

color='red',

linewidth=1.5,

hue=hue,

palette="hls")

axes[2].set_xticks(np.arange(0, 7, 1))

axes[2].set_xticklabels(week, fontsize=13)

axes[2].set_yticklabels('')

axes[2].set_xlabel('day of week', fontsize=15)

axes[2].set_ylabel('')

axes[2].legend().set_title('')

Fig-3

In the second part of our Time Variation, we want to check if there is any difference between

mean pollutant concentrations by the hour and by days of the week . This is a great tool to use

for checking the seasonality of a pollutant during a week. In the example above, it’s clear that the

pollutant concentrations decrease on weekends, which can be related to the reduction of car

traffic on these days.

We hope this article can help many others who are working on this topic of research, and also we hope

you enjoy it as we did.

List of reference:

1. Qadamova, Z., & Sotvoldiyeva, N. (2023). DASTURLASHNI O ‘RGANUVCHILAR UCHUN

ENG YAXSHI DASTURLASH TILLARI. Educational Research in Universal Sciences, 2(10),

241-244.

2. Хусанова, М. К., & Сотволдиева, Д. Б. (2020). ИСПОЛЬЗОВАНИЕ ДЕЦИМАЦИИ И

ИНТЕРПОЛЯЦИИ ПРИ ОБРАБОТКЕ СИГНАЛОВ В ПРОГРАММЕ MATLAB. In

ЦИФРОВОЙ РЕГИОН: ОПЫТ, КОМПЕТЕНЦИИ, ПРОЕКТЫ (pp. 970-975).

3. Toxirova, S. (2023). Python dasturida lug’atlar bilan ishlash . Conference on Digital Innovation :

"Modern Problems and Solutions". извлечено от

https://fer-teach.uz/index.php/codimpas/article/view/1910

4. Muhammadjonov, A., & TURLARI, T. S. Y. T. ICHKI VA TASHQI YARIMO

‘TKAZGICHLAR. Research and implementation.–2023.20, 23.

5. D. Sotvoldieva. (2023). FREQUENCY ANALYSIS OF THE SIGNAL. Best Journal of Innovation

in Science, Research and Development, 2(11), 693–699. Retrieved from

https://fer-teach.uz/index.php/codimpas/article/view/1910

