

Vol. 54 (2024): Miasto Przyszłości +62 811 2928008 .

19 Miasto Przyszłości
Kielce 2024

Impact Factor: 9.9 ISSN-L: 2544-
980X

MODERN STAGES OF SOFTWARE DEVELOPMENT IN

COMPUTER NETWORKS

PhD. Ruzimov Bahromjon Bakhodirjonovich
Andijan State University. Associate professor of the department

bahromjon7174@inbox.ru

 Annotation: This article presents an in-depth analysis of the stages in software development
specific to computer networks. With the evolution of network technologies, software development
processes have adapted to meet the requirements of scalability, security, and performance in increasingly
complex environments. This article covers the software development lifecycle (SDLC) stages,
incorporating modern practices such as DevSecOps, cloud-native development, and automation. Each
stage is analyzed with a focus on how it applies to networked systems, ensuring reliability and efficiency.
 Keywords: Software Development Lifecycle, Computer Networks, DevSecOps, Automation,
Cloud-native, Network Software, Agile, Continuous Integration, Continuous Deployment

 Introduction. Computer networks are foundational to the digital economy, supporting
functions ranging from data transfer and storage to advanced computational processes in cloud
computing and IoT. As network demands grow, the development of network software must keep pace,
adapting to requirements for scalability, security, and automation. Traditional software development
methodologies are evolving, incorporating DevSecOps, agile practices, and cloud-native approaches to
meet these new demands. This article aims to present a comprehensive overview of the modern stages
of software development in computer networks, highlighting advancements and providing practical
insights for developers.

 Main Part

The main stages of software development in computer networks include requirements gathering
and analysis, design, implementation, testing, deployment, and maintenance. Each stage integrates
modern tools and methodologies aimed at enhancing software reliability, security, and adaptability in
network environments.

 2.1 Requirements Gathering and Analysis

At this stage, stakeholders define the functional and non-functional requirements for network
software, with a focus on performance, security, and interoperability. Modern techniques include:

- Collaborative workshops with network architects, administrators, and end-users to define clear
requirements.

- Modeling and Simulation: Using tools like NS-3 or OMNeT++ to simulate network conditions,
identifying potential performance bottlenecks.

 2.2 Design

Vol. 54 (2024): Miasto Przyszłości +62 811 2928008 .

20 Miasto Przyszłości
Kielce 2024

This stage focuses on developing a software architecture that meets the identified requirements.
Important aspects include:

- Modular Architecture: Ensuring that the software is designed in components that can be
independently updated and scaled.

- Cloud-Native and Microservices: Modern network software design increasingly favors
microservices, allowing independent service deployment and scaling.

- Security by Design: Incorporating security protocols and encryption from the design phase helps
ensure robust data handling in networked environments.

 2.3 Implementation

Implementation involves coding and configuration. In network software, automation and DevOps
practices are commonly integrated to streamline code management, testing, and deployment:

- Version Control Systems (VCS): Tools like Git allow collaborative, distributed software
development.

- Coding Standards for Network Protocols: Adherence to standards like TCP/IP, UDP, and SDN
ensures compatibility and reliability.

- Automation with Infrastructure as Code (IaC): IaC tools like Terraform and Ansible automate
network configurations, ensuring consistency across distributed environments.

 2.4 Testing

Testing network software requires validation across various parameters, such as functionality,
security, and load handling. Modern network software testing includes:

- Unit and Integration Testing: Verifying that each component and its interactions meet the
specified requirements.

- Load Testing and Simulation: Using tools like Apache JMeter to simulate real-world network
traffic and stress-test software.

- Security Testing: Penetration testing and vulnerability scanning ensure that network software is
resistant to attacks.

 2.5 Deployment

Deployment in network environments includes rolling out software across network nodes or data
centers while minimizing disruption. Continuous Integration (CI) and Continuous Deployment (CD)
pipelines, commonly used in DevOps, support automated deployments:

- Containerization and Orchestration: Containers (Docker) and orchestration tools (Kubernetes)
simplify deployment, allowing for rapid scalability.

- Canary Releases and Blue-Green Deployments: These strategies allow testing on a small portion
of the network, reducing risks associated with large-scale deployments.

 2.6 Maintenance

Vol. 54 (2024): Miasto Przyszłości +62 811 2928008 .

21 Miasto Przyszłości
Kielce 2024

Maintenance includes ongoing updates, monitoring, and patching. The need for real-time
monitoring tools and feedback loops is critical:

- Automated Monitoring and Alerts: Tools like Prometheus and Grafana provide continuous
monitoring, detecting performance and security issues.

- Patch Management and Updates: Regular software updates and patches ensure compliance with
security standards and optimize performance.

3. Tables
The following tables outline tools and practices commonly used at each stage:

Conclusion. The stages of software development in computer networks have evolved significantly
with advancements in cloud computing, DevOps, and security. By integrating modern tools and
methodologies, developers can ensure that network software meets the demands of high performance,
scalability, and robust security. Embracing a structured approach that incorporates DevSecOps,
containerization, and automation is crucial for organizations seeking to build resilient and efficient
network software.

References:

 Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice. Addison-
Wesley.

 Stallings, W. (2015). Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud.
Pearson.

 Red Hat. (2020). DevOps Practices and Principles. Red Hat Inc.

 Kubernetes Documentation. (2022). Introduction to Kubernetes. Kubernetes.

 Petersen, K., & Wohlin, C. (2009). A Comparison of Agile Practices and Traditional Software
Development Methodologies f

Stage Tools/Practices Description

Requirements
Gathering

NS-3, OMNeT++ Simulation tools for network
modeling

Design Microservices, Zero-Trust
Design, Cloud-Native Patterns

Architecture practices

Implementation Git, Terraform, Ansible, VCS Version control and
automation

Testing JMeter, Wireshark, Penetration
Testing

Performance and security
testing

Deployment Docker, Kubernetes, CI/CD Containerization and
automation

Maintenance Prometheus, Grafana, Patch
Management

Monitoring and patching

Vol. 54 (2024): Miasto Przyszłości +62 811 2928008 .

22 Miasto Przyszłości
Kielce 2024

 or Distributed Development.

