Определение Надежности Плотин Водохранилищ Топографо-Геодезическим Методом

Нарзиев Жасурбек Жураевич ¹, Жовлиев Уктам Темирович ², Мурадов Навруз Курбанович ³, Камолова Саодат ⁴, Омондуллохонов Фаёз ⁵, Хазратов Маъруфжон ⁶

Пачкамарское водохранилище русловое, сезонного регулирования, расположено в долине р. Гузардарья при слиянии ее двух составляющих - рек Урадарьи и Кичикурадарьи. Географически водохранилище расположено у пос. Пачкамар, в 15 км от районного центра Гузар и в 65 км восточнее г.Карши. Проектные параметры водохранилища: Отметки ФПУ=677,7 м, НПУ=676,0 м, УМО=636,0 м, полная емкость водохранилища — 260,0 млн.м³, полезная емкость - 250, 0 млн.м³, мертвый объем — 10,0 млн.м³, площадь зеркала при НПУ — 12,4 км², УМО — 1,6 км², длина водохранилища — 5,0 км, глубина водохранилища: максимальная — 62,0 м и средняя — 21,0 м, ширина водохранилища — 2,0 км.

Натурные наблюдения за деформациями сооружений водохранилища начаты в период строительства.

Была произведена закладка КИА (контрольно-измерительной аппаратуры) и выполнен нулевой цикл наблюдений за осадками и горизонтальными деформациями сооружений водохранилища.

В 1965 г. проведён нулевой цикл наблюдений за осадками и горизонтальными деформациями плотины и сооружений в октябре - ноябре 1969 г от института "Узгипроводхоза". Отметки определены институтом «Узгипроводхоз» в Балтийской системе высот ІІІ-им классом, от марки ІІ класса, находящейся в здании станции "Гузар".

1. Наблюдения за осадками плотины и применяемые инструменты

Все разряды нивелирования II и III классов производились одними и теми же инструментами: нивелир нивелир фирмы Leica модели Sprinter 250 М №2216112 и штрих-кодовыми рейками GSS111 №741882/1 и №741882/2 (пятиметровые).

2. Методика нивелирования, точность

Нивелирование II разряда выполнено между реперов и по осадочным маркам откоса плотины нижнего бъефа до марки №1 гребня плотины. Выполнен прямом и обратном направлении по фундаментального репера №03. Характеристика результатов нивелирования II класса приведена в таблице №3.

¹ Научно-исследовательский институтирригации и водных проблем

² Научно-исследовательский институтирригации и водных проблем

³ Научно-исследовательский институтирригации и водных проблем

⁴ Докторанты

⁵ Докторанты

⁶ Докторанты

Таблица №3

No	Наименование	Длина	Число	Разность превн	Ср.кв.	
	ходов	хода,	шта-	обратного ходов, мм		погрешность
		KM	тивов	получено	допустимо	одного
						штатива
1	Рп.06- Рп.07	1,53	98	4,3	□4,9	$\Box 0,\!08$

Допустимая разность превышений прямого и обратного ходов в нивелировании II класса подсчитана по формуле:

$$\mathbf{fh}_{\text{доп}} = \pm 0.5 \sqrt{\mathbf{n}} \tag{1}$$

где п –число штативов в ходе одного направления.

В нивелировании II класса значение средней квадратической ошибки одного штатива (m_{cr}) подсчитано по формуле:

$$m_{cT} = \pm \frac{1}{2} \sqrt{\frac{[dd]}{2n}} \tag{2}$$

где: d - разность превышений, измеренные на станции по основной и дополнительной шкале рейки.

n - число разностей.

Средняя квадратическая погрешность слабой марки в конце хода (марка 10), за нивелированной II классом будет равна:

$$m = \sqrt{m_1^2 + m_2^2} \ (3)$$

где: m₁ - ср.кв.погрешность марки 1 из нивелирования II класса,

m₂ - ср.кв.погрешность нивелирования II класса по гребню плотины от

марки 1 до марки 10.

Исходя из полученных данных, положение высотной марки 1 будет получено со средней квадратической погрешностью:

$$m_1 = \mu \sqrt{n} = \Box 0.8 \text{ MM (4)}$$

где: п - число штативов в ходе от Ф.рп.3 до высотной марки М1,

□ □ □ □ □ □ - ср.кв.погрешность одного штатива из нивелирования II класса.

$$m_2 = \mu \sqrt{n} = \Box 0.33 \text{ MM (5)}$$

где: \Box \Box - ср.кв.погрешность одного штатива из нивелирования II класса по гребню плотины.

$$m = \sqrt{m_1^2 + m_2^2} = \Box 0.87$$
 mm.

Средняя квадратическая погрешность осадки слабой марки будет равна:

$$M_{oc} = \pm m\sqrt{2} = \pm 1,22 \text{ mm (6)}$$

$$M_{\text{oc. пред}} = \pm 2M_{\text{oc}} = \pm 2,45 \text{ мм (7)}$$

На основании РСТ Уз.843-97 таблицы №2 допустимая погрешность измерения вертикальных деформаций зданий и сооружений 4 класса точности составляет ±10 мм, что удовлетворяет техническим требованиям. Нивелирование III класса выполнено по маркам гребня плотины, в здании управления затворами и по маркам водосброса. Нивелирование III класса выполнено

замкнутыми ходами, опирающиеся на знаки нивелирования II классса. В таблице №4 дана характеристика нивелирных ходов III класса.

Таблица №4

				Нев	Ср.кв.по	
NN	Наименова	Длина	Число			грешность
	ние ходов	хода км	штативов	получено	допустимо	одного
						штатива-
1	м.7-м.7	0,69	32	-3,5	□8,5	$\Box 0,11$
2	Рп8 –п5	0,70	44	-4,2	□□,9	□0,12
3	м.3434	0,18	18	-2,7	□ □,4	□0,19

Невязка замкнутого хода в нивелировании III класа подсчитана по формуле:

$$f_n = \pm 1.5\sqrt{n}$$
 (8)

где: п - число штативов.

Средняя квадратическая ошибка на станции подсчитана по формуле:

$$m_{c_T} = \pm \frac{1}{2} \sqrt{\frac{[dd]}{2n}} (9)$$

где: d - разность превышений, измеренных по основной и дополнительной шкалам, n - число разностей (ровен на 1,4).

Средняя квадратическая погрешность слабой марки в середине хода, занивелированной III классом будет равна:

$$m = \sqrt{m_1^2 + m_2^2} = \pm 0.82 \text{ mm } (10)$$

где: m₁ - ср.кв.погрешность слабой марки из нивелирования II класса,

m₂ - то же, III класса.

Исходя из полученных данных, положение высотной марки в слабом месте соответствующего класса будет получено со средней квадратической погрешностью:

$$m_1 = m_{cr} \sqrt{n} = \square 0.62 \text{ m (11)}$$

где: п - число штативов в ходе от ф.рп. 3 до высотной марки м 1,

□ - ср.кв.погрешность одного штатива из нивелирования II класса.

$$m_2 = \mu_2 \sqrt{n} = \square 0,54 \text{ MM } (12)$$

где: μ - ср. кв. погрешность одного штатива из нивелирования III класса, равна от $\pm 0,11$ до $\pm 0,19$ мм (таблица $\mathbb{N} = 4$) .

$$M_{oc} = \pm m\sqrt{2} = \pm 1,16 \text{ MM } (13)$$

$$M_{oc. пред} = \pm 2M_{oc} = \pm 2,33 \text{ MM } (14)$$

На основании РСТ Уз.843-97 таблицы №2 допустимая погрешность измерения вертикальных деформаций зданий и сооружений 4 класса точности составляет ±10 мм, что удовлетворяет техническим требованиям.

3. Контрольная высотная основа

Отметки контрольных высотных знаков получены из нивелирования II и III разряда. Ниже приводятся отметки осадочных марок (нулевого и последнего циклов), расположенные на сооружениях плотины, полученные из нивелирования II и III классов. Данные осадок приведены в таблице №5.

Таблица №5

					T.
	Место-		Осаді	Осадка, мм	
Марок	положение	11 ци	кл IV-	12 цикл VIII.	между12-11
	положение		17 г	2024 г.	циклами
		Гребені	плотині	Ы	
ПМ-21	0+07	-	51	-55	-4
ПМ-22	0+48	-322		-333	-11
ПМ-23	0+88	-3	99	-414	-15
ПМ-24	1+39	-4	-00	-414	-14
ПМ-25	2+06	-4	-35	-445	-10
ПМ-26	2+54	-4	-16	-432	-16
ПМ-27	3+20	-3	49	-362	-13
ПМ-28	3+66	-2	207	-213	-6
ПМ-29	4+06	-1	.63	-164	-1
ПМ-30	4+86	-1	16	-119	-3
ПМ-31	5+10	-	84	-90	-6
ПМ-32	5+48		40	-50	-10
	Бе	рма на о	тметке 6	65 м	
ПМ-8	0+48	-1	50	-155	-5
ПМ-9	0+88	-2	206	-213	-7
ПМ-10	1+39	-2	:04	-211	-7
ПМ-11	2+06	-209		-221	-12
ПМ-12	2+54	-2	207	-216	-9
ПМ-13	3+20	-1	54	-161	-7
ПМ-14	3+66	-,	54	-55	-1
ПМ-15	4+06	-:	38	-40	-2
ПМ-16	4+50	-	-7	-12	-5
ПМ-17	4+86	-:	35	-39	-4
	Бе	рма на о	тметке 6	50 м	
ПМ-4	0+88	-1	31	-136	-5
ПМ-5	2+06	-131		-139	-8
ПМ-6	3+20	-80		-86	-6
ПМ-7	3+66		-41 -41		0
	Бе	рма на о	тметке 6	35 м	
ПМ-1	0+88	-98	-106		-8
ПМ-33	2+06	-20		-23	-3
ПМ-34	3+20	-14	-17		-3
		Дамба об	валован	Р	
ПМ-17	0+10	-7		-17	-10
ПМ-18	0+97	-62		-70	-8
ПМ-19	1+60	-62		-67	-5
ПМ-20	2+30	-14		-24	-10
		инные р	епера. К		I
ГМ-4	2+56	-354		-362	-8
ГМ-5	2+61	-498		-512	-14
	•				•

4. Заключение

По полученным данным ведомости осадок (таблица №5) построены графики вертикальных перемещений по плотине, бермам, дамбе обвалования и глубинным маркам.

Гребень плотины за период между циклами имеет неравномерную осадку:

- ▶ по между 0-ой и 12-ей циклам (1971-2024 гг. в течение 53 лет) составляет от «-50» мм до «-445» мм, средняя осадка в год составляет от «-0,9» до «-8,4» мм.
- ▶ по между 11-ый и 12-ей циклам (2017-2024 гг. в течение 7 лет) составляет от «-1» мм до «-16» мм, средняя осадка в год составляет от «-0,1» до «-2,3» мм.

Бермы нижнего бьефа на отметке 665 м имеют неравномерную осадку:

- ▶ по между 0-ой и 12-ей циклам (1971-2024 гг. в течение 53 лет) составляет от «-12» мм до «-221» мм, средняя осадка в год составляет от «-0,2» до «-4,2» мм.
- ▶ по между 11-ый и 12-ей циклам (2017-2024 гг. в течение 7 лет) составляет от «-1» мм до «-12» мм, средняя осадка в год составляет от «-0,3» до «-1,7» мм.

Бермы нижнего бьефа на отметке 650 м имеют неравномерную осадку:

- ▶ по между 0-ой и 12-ей циклам (1971-2024 гг. в течение 53 лет) составляет от «-41» мм до «-139» мм, средняя осадка в год составляет от «-0,8» до «-2,6» мм.
- \triangleright по между 11-ый и 12-ей циклам (2017-2024 гг. в течение 7 лет) составляет от «-0» мм до «-8» мм, средняя осадка в год составляет от «0,0» до «-1,1» мм.

Бермы нижнего бьефа на отметке 635 м имеют неравномерную осадку:

- ▶ по между 0-ой и 12-ей циклам (1971-2024 гг. в течение 53 лет) составляет от «-17» мм до «-106» мм, средняя осадка в год составляет от «-0,3» до «-2,0» мм.
- ▶ по между 11-ый и 12-ей циклам (2017-2024 гг. в течение 7 лет) составляет от «-3» мм до «-8» мм, средняя осадка в год составляет от «-0,4» до «-1,1» мм.

Дамба обвалования имеют неравномерную осадку:

- ▶ по между 0-ой и 12-ей циклам (1971-2024 гг. в течение 53 лет) составляет от «-5» мм до «-10» мм, средняя осадка в год составляет от «-0,3» до «-1,3» мм.
- ▶ по между 11-ый и 12-ей циклам (2017-2024 гг. в течение 7 лет) составляет от «-5» мм до «-10» мм, средняя осадка в год составляет от «-0,7» до «-1,4» мм.

Глубинные репера. Куст №1 имеют неравномерную осадку:

- ▶ по между 0-ой и 12-ей циклам (1971-2024 гг. в течение 53 лет) составляет от «-354» мм до «-498» мм, средняя осадка в год составляет от «-7» до «-10» мм.
- \triangleright по между 11-ый и 12-ей циклам (2017-2024 гг. в течение 7 лет) составляет от «-8» мм до «-104» мм, средняя осадка в год составляет от «-1,1» до «-2,0» мм.

Глубинные репера. Куст №2 имеют неравномерную осадку:

- ▶ по между 0-ой и 12-ей циклам (1971-2024 гг. в течение 53 лет) составляет от «-44» мм до «-407» мм, средняя осадка в год составляет от «-0,8» до «-6,2» мм.
- ▶ по между 11-ый и 12-ей циклам (2017-2024 гг. в течение 7 лет) составляет от «-3» мм до «-16» мм, средняя осадка в год составляет от «-0,4» до «-2,3» мм.

Глубинные репера. Куст №3 имеют неравномерную осадку:

- ▶ по между 0-ой и 12-ей циклам (1971-2024 гг. в течение 53 лет) составляет от «-32» мм до «-93» мм, средняя осадка в год составляет от «-0,6» до «-1,8» мм.
- ▶ по между 11-ый и 12-ей циклам (2017-2024 гг. в течение 7 лет) составляет от «-9» мм до «-12» мм, средняя осадка в год составляет от «-1,3» до «-1,7» мм.

Список литературы

- 1. Нарзиев Ж.Ж. Сув омборлари грунтли тўғонларининг ишончлилик параметрларини хисоблашнинг гидравлик усулларини такомиллаштириш/ дисс. техника фанлари бўйича (PhD) фалсафа доктори 05.09.07//Тошкент 2022.
- 2. И.Махмудов, Ж.Нарзиев, Б.Улуғбеков, Ш.Устемиров. Технический отчет о натурных наблюдениях топографо-геодезическими методами за деформациями плотины Акдарьинского водохранилища 4-ий цикл. Тошкент, 2022 г. С. 28.
- 3. Ж.Ж.Нарзиев. Совершенствование гидравлических методов расчета параметров надежности грунтовых плотин водохранилищ. Автореферат диссертации доктора философии (Phd) по техническим наукам. Тошкент, 2022 г. С. 44.