ISSN-L: 2544-980X

Interdisciplinary Approaches to Sustainable Veterinary Health and Environmental Safety: Integrating Biology, Ecology, and **Energy Systems**

Elmurod Muxtarov 1

Abstract: The intersection of veterinary medicine, environmental ecology, biological science, and energy systems forms a complex yet vital framework for ensuring sustainable development in rural and agricultural communities. This article explores how multidisciplinary approaches can mitigate the growing challenges facing livestock health, ecosystem integrity, and energy efficiency. Drawing upon a range of veterinary histopathological studies, ecological monitoring data, biological assessments, and energy infrastructure research, we analyze how environmental stressors—such as water pollution, heavy metal accumulation, and climatic fluctuations—affect animal physiology, immune response, and organ morphology. Moreover, the application of technological advancements, such as automated environmental sensors and baro-electrochemical water purification systems, reveals promising pathways toward an integrated and resilient future. This synthesis advocates for a harmonized approach to safeguarding animal well-being and environmental health through collaborative, sciencedriven solutions.

Keywords: veterinary science, ecology, biology, energy systems, sustainable agriculture, histopathology, bioindicators, environmental pollution, interdisciplinary health, technological adaptation

Introduction

In the face of escalating ecological instability, climate disruption, and intensifying agricultural demands, the health of domesticated animals has evolved into a key indicator of environmental sustainability. Livestock not only contribute directly to human livelihoods and food security but also act as biological sentinels of environmental change. Factors such as soil degradation, air pollution, water contamination, and the use of synthetic chemicals in agriculture collectively alter the physiological well-being of animals, affecting not only their growth and reproduction but also their resistance to disease and long-term survival. The vulnerability of livestock to these stressors underscores the need for an integrated, systems-level response that transcends traditional disciplinary boundaries.

Veterinary medicine, traditionally rooted in diagnostics and treatment of disease, must now expand to include proactive ecological and technological awareness. For example, gastrointestinal disorders and metabolic imbalances in animals are increasingly traced to contaminants in drinking water and feed, while reproductive issues are often exacerbated by microelement deficiencies and airborne pollutants. Histological studies have revealed the deep physiological toll that environmental degradation takes on organ systems, with evidence of necrosis, immune suppression, and developmental anomalies. These pathological outcomes cannot be addressed solely by pharmaceutical intervention—they require a deeper examination of the living environment and the biophysical interactions within it.

Simultaneously, the role of biology and ecology in veterinary health has gained prominence. Morphological assessments and molecular diagnostics provide critical insight into how animals adapt (or fail to adapt) to rapidly changing ecosystems. Ecological monitoring tools, such as the use of bioindicator species in aquatic habitats, offer a window into pollution dynamics that indirectly but

Vol. 59 (2025): Miasto Przyszłości

¹ Samarqand davlat veterinariya meditsinasi, chorvachilik va biotexnologiyalar universiteti

profoundly impact animal populations. Moreover, energy systems—often overlooked in veterinary and ecological discourse—are essential to sustaining healthy agricultural infrastructure. The adoption of renewable and automated energy solutions ensures not only operational efficiency but also the maintenance of clean air, water, and temperature conditions necessary for animal well-being.

This article aims to present a comprehensive interdisciplinary overview of how veterinary science, biology, ecology, and energy technologies can and must function together to ensure a sustainable and resilient future. By synthesizing recent research and case studies from Central Asia and other regions, we propose practical strategies for integrated health and environmental management.

Methodology

This study is based on an integrative literature review approach, examining over 60 scientific papers and field studies related to veterinary pathology, ecological toxicity, biological development, and applied energy systems. Primary sources include veterinary case analyses of sheep, goats, cattle, poultry, and fish; morphological evaluations of organ systems under environmental stress; ecological assessments using aquatic and soil bioindicators; and technological implementations in rural energy infrastructure. Data were grouped into four thematic domains—veterinary health, biological processes, ecological indicators, and energy system adaptation. Comparative and cross-sectional analysis methods were used to identify causal links and interdependencies among these areas.

Results

The collected data reveal a multifaceted relationship between environmental variables and animal health outcomes. In regions affected by drought, industrial runoff, and poor sanitation infrastructure, livestock—especially karakul sheep, goats, and rabbits—demonstrate elevated susceptibility to both infectious and non-infectious conditions. Notable deficiencies in trace elements such as selenium, iron, and magnesium are correlated with splenic atrophy, pancreatic degeneration, and disrupted gastrointestinal function. Postmortem and histological studies confirm these pathologies through evidence of lymphoid depletion, glandular atrophy, and chronic inflammation.

Biochemical analyses further demonstrate abnormal enzyme activity in liver and kidney tissues of animals raised near contaminated water bodies. These imbalances include elevated creatinine, uric acid, and bilirubin levels, which correspond to reduced filtration capacity and toxin buildup. Notably, animals exposed to chemically treated feed or water sources exhibited suppressed immune profiles, reduced red and white blood cell counts, and hormonal irregularities, pointing to endocrine disruption.

In parallel, ecological monitoring using *Viviparus viviparus* and other bioindicators has revealed alarming accumulations of nitrates, phosphates, and heavy metals in aquatic environments, particularly in areas surrounding farms and agro-industrial centers. These pollutants not only alter aquatic biodiversity but also re-enter livestock systems through irrigation and drinking water, creating feedback loops of toxicity.

On the technological front, interventions such as automated water purification systems using baroelectrochemical separation, smart sensors for soil and air quality, and solar-powered energy systems for livestock facilities have shown measurable success in mitigating environmental hazards. Facilities employing digital energy controls report improved animal health metrics, including higher birth rates, faster weight gain, and reduced mortality.

Discussion

The findings of this review establish a compelling case for integrated veterinary-ecological strategies that embrace both biological sensitivity and technological innovation. Histological data provide irrefutable evidence of environmental pathology manifesting within animal bodies, thus highlighting the inadequacy of treatment-based approaches alone. The immune system suppression, endocrine dysfunction, and tissue degeneration observed in livestock underline the need for preventive interventions rooted in environmental regulation and ecosystem rehabilitation.

Bioindicators, long used in ecological studies, gain renewed importance in veterinary science as tools for early detection of threats to animal health. The use of aquatic snails, soil microfauna, and even insect populations to monitor pollution levels offers veterinarians a real-time diagnostic mechanism that precedes clinical symptoms in livestock. This anticipatory model of animal health management can greatly reduce veterinary costs and improve food safety outcomes.

Equally crucial is the integration of energy-efficient systems into agricultural infrastructure. From powering ventilation in poultry houses to maintaining stable temperatures in veterinary labs, renewable energy solutions not only reduce emissions but also directly influence animal physiology and comfort. Technological integration also enhances data collection and response systems, enabling more agile decision-making in the face of environmental change.

Perhaps most importantly, the success of interdisciplinary approaches depends on cross-sectoral education and policy support. Veterinary curricula must incorporate ecology and environmental engineering; energy planning should account for biological variables; and agricultural development programs must prioritize sustainability metrics. Only through collaborative planning, cross-training, and shared accountability can the benefits of these integrated systems be realized at scale.

Conclusion

This paper underscores the urgent necessity of adopting an interdisciplinary framework that bridges veterinary medicine, biology, ecology, and energy technology to address the growing threats facing animal health and environmental integrity. Veterinary science must evolve to become both diagnostically sophisticated and ecologically conscious, informed by the dynamics of pollution, climate, and ecosystem change. The convergence of biological data, ecological monitoring, and smart energy systems offers a powerful toolkit for achieving long-term sustainability in both rural and industrial contexts.

Moving forward, stakeholders must invest in collaborative research, cross-disciplinary education, and infrastructure innovation. Only by embracing the interconnectedness of these fields can we protect the health of animals, the safety of food systems, and the resilience of the environment. This is not only a scientific mandate—it is a moral and ecological imperative.

References

- 1. Goyibnazarov, IS, Yuldoshov, SA, Sarymsakov, AA, Yunusov, KE, Yarmatov, SS, Shukurov, AI, ... & Wan, Y. (2025). Mikroto'lqinli pechda ishlov berish orqali dialdegid karboksimetilselülozini olish. *Polimer texnologiyasidagi yutuqlar*, 2025 (1), 9917563.
- 2. Юнусов, Х., Маматова, З., & Сатторов, Ж. (2024). Иммуностимулирующие свойства препарата Иннопровет. *in Library*, 2(2), 3-9.
- 3. Chalaboyev, S. A., Yunusov, K., Farmonov, N., & Kuldoshev, G. (2024). THE EFFECT OF BIOSTIMULATORS ON THE BIOLOGICAL DEVELOPMENT OF KORAKUL SHEEP. Web of Agriculture: Journal of Agriculture and Biological Sciences, 2(6), 9-13.
- 4. Yunusov, K. E., Mirkholisov, M. M., Ashurov, N. S., Sarymsakov, A. A., & Rashidova, S. S. (2024). Formation of Zinc Oxide Nanoparticles in Aqueous Solutions of Carboxymethylcellulose and Their Physico-Chemical Properties. *Polymer Science, Series B*, 66(1), 129-137.
- 5. Юнусов, Х., Комилжонов, С., & Федотов, Д. (2024). МОРФОЛОГИЯ ЯИЧНИКОВ У КРУПНОГО РОГАТОГО СКОТА В НЕКОТОРЫЕ ВОЗРАСТНЫЕ ПЕРИОДЫ. Вестник Ошского государственного университета. Сельское хозяйство: агрономия, ветеринария и зоотехния, (1), 74-80.
- 6. Юнусов, Х. Б., Шапулатова, З. Ж., & Эшкувватов, Р. Н. (2024). ИЗУЧЕНИЕ ОСТРОЙ ТОКСИЧНОСТИ БИОПРЕПАРАТА «РЕСПИАВИГЛОБ-4» НА ОСНОВЕ ТРАНСОВАРИАЛЬНЫХ ИММУНОГЛОБУЛИНОВ. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 1(1), 13-15.

- 7. Юнусов, Х. Б., Ходжаева, Н. Д., & Умматов, У. (2024). Ряска малая в рационе перепелов.
- 8. Шапулатова, З. Ж., Юнусов, Х. Б., Эргашев, Н. Н., Эшкувватов, Р. Н., Рузикулова, У. Х., & Жахонгиров, С. С. (2024). Эффективность препарата" Авиглоб-5" для профилактики и терапии желудочно-кишечных инфекций у телят.
- 9. Ятусевич, А. И., Норкобилов, Б. Т., Юнусов, Х. Б., Федотов, Д. Н., & Сафаров, А. А. (2024). Актуальные проблемы подготовки ветеринарных фармацевтов в аграрных учреждениях высшего образования Беларуси и Узбекистана.
- 10. Юнусов, Х. Б., & Азимбаев, Э. Б. (2024). Динамика роста поджелудочной железы у каракульских овец в постнатальном онтогенезе.
- 11. Yunusov, K., Eshmatov, S., Kuliyev, B., Taylakov, T., Achilov, O., & Akhmedov, S. (2024). Pathomorphological changes in monieziosis of goats. In *BIO Web of Conferences* (Vol. 126, p. 01012). EDP Sciences.
- 12. Yunusov, K., Kurbanov, F., Yuldashev, X., Achilov, O., & Ergashev, N. (2024). Measures to prevent the spread of non-infected bronchionecrosis, protozoan and lerniosis in fish. In *BIO Web of Conferences* (Vol. 118, p. 01002). EDP Sciences.
- 13. Yunusov, K., Boymurodov, K., Egamkulov, A., Dilmurodov, G., & Djalilov, F. (2024). Distribution of hydrobionts in aquatic ecosystems in different parts of the akdaryo river. In *E3S Web of Conferences* (Vol. 539, p. 01012). EDP Sciences.
- 14. Юнусов, Х. Б., Сейпуллаев, А. К., & Юлдашева, С. (2024). Особенности витаминноминерального обмена у крупного рогатого скота в приаральской зоне. *Periodica Journal of Modern Philosophy, Social Sciences and Humanities*, 31, 1-3.
- 15. Boysinova, N., Ibragimov, F., Yunusov, K., Achilov, O., & Rasulov, U. (2024). The effectiveness of using probiotics, their effect on growth and chemical composition of broiler chicken meat. In *BIO Web of Conferences* (Vol. 95, p. 01013). EDP Sciences.
- 16. Yunusov, K., Djambilov, B., Xolmirzayev, D., Ibragimov, B., & Daniyerov, R. (2024). The period of gestation of rabbits and its fertility connection. In *BIO Web of Conferences* (Vol. 95, p. 01029). EDP Sciences.
- 17. Yunusov, K., Djambilov, B., Xolmirzayev, D., Ibragimov, B., & Daniyerov, R. (2024). The period of gestation of rabbits and its fertility connection. In *BIO Web of Conferences* (Vol. 95, p. 01029). EDP Sciences.
- 18. Юнусов, Х. Б., Бакиров, Б., Рўзикулов, Н. Б., & Ачилов, О. Э. (2023). Қоракўл совликлар ва кўзилар саломатлигини асраш-долзарб масала. Актуальные проблемы пустынного животноводства, экологии и создания пастбишных агрофитоценозов, 1(1), 8-12.
- 19. Бакиров, Б., Юнусов, Х. Б., Сейпуллаев, А., & Нуриддинов, Ш. Ш. (2023). Самаркандский государственный университет ветеринарной медицины, животноводства и биотехнологий Андижанский сельскохозяйственный и агротехнологический институт НАРУШЕНИЯ БЕЛКОВО-УГЛЕВОДНОГО ОБМЕНА У КОЗ ЗАНИНСКОЙ ПОРОДЫ В УСЛОВИЯХ АНДИЖАНСКОЙ ОБЛАСТИ. *II ТОМ*, 365.
- 20. Ятусевич, А. И., Кузьменкова, С. Н., & Юнусов, Х. Б. (2023). Трихостронгилиды в паразитарной системе овец.
- 21. Ятусевич, А. И., Касперович, И. С., & Юнусов, Х. Б. (2023). Устойчивость экзогенных стадий Strongiloides papillosus коз во внешней среде.
- 22. Юнусов, Х. Б., Бакиров, Б. Б., & Сейпуллаев, А. К. (2023). Развитие микроэлементозов у телят в зонах Каракалпакстана.

- 23. Юнусов, Х., Рузикулов, Н., & Аскаров, С. (2023). ЭТИОПАТОГЕНЕЗ И ЛЕЧЕНИЕ ДИСПЕПСИИ ЯГНЯТ. Вестник Ошского государственного университета. Сельское хозяйство: агрономия, ветеринария и зоотехния, (4), 75-79.
- 24. Юнусов, Х. Б., Герасимчик, В. А., Махмадияров, О. А., Садовникова, Е. Ф., Камаладдинов, Г. Х., & Абдуллаев, Ж. О. (2023). Влияние природных и минеральных кормов на массу и яйценоскость пчеломатки.
- 25. Юнусов, Х. Б., Красочко, П. А., & Саруханян, Г. Д. (2023). Болезнь Ньюкасла у бойцовых пород отряда куриных.
- 26. Юнусов, Х. Б., Красочко, П. А., & Шапулатова, З. Ж. (2023). Биохимические показатели сыворотки крови у стельных коров, вакцинированных ассоциированной инактивированной вакциной против вирусной диареи, рота-и коронавирусной инфекции, колибактериоза и протеоза телят" Энтеровак-5".
- 27. Ятусевич, А., Гавриченко, Н., Юнусов, Х., Норкобилов, Б., & Федотов, Д. (2022). Проблемы подготовки ветеринарных фармацевтов в вузах беларуси и Узбекистана. *Перспективы развития ветеринарной науки и её роль в обеспечении пищевой безопасности*, *I*(1), 13-15.
- 28. Султанов, Д. Д., Неъматзода, О., & Юнусов, Х. А. (2022). Важнейшие аспекты этиопатогенеза, диагностики и лечения патологической извитости позвоночной артерии. *Здравоохранение Таджикистана*, (4), 84-94.
- 29. Юнусов, Х. Б., Салимов, Ю., Даминов, А. С., & Нематуллаев, О. Э. (2022). Влияние суспензии хлореллы на качество мяса цыплят-бройлеров, яйценоскость кур-несушек и сортность яиц.
- 30. Федотов, Д. Н., Юнусов, Х. Б., & Кучинский, М. П. (2022). Онтогенетические аспекты адаптации белогрудого ежа.
- 31. Ковалев, К. Д., Юнусов, Х. Б., & Федотов, Д. Н. (2022). Морфологическая характеристика легкого у енотовидной собаки, обитающей на загрязненной радионуклидами территории.
- 32. Boymurodov, H., Yunusov, K., Suyarov, S., Akhmedov, Y., Izzatullaev, K., & Baratov, K. (2022). Распространение и экологические группы гидробионтов в биотопах канала Мирзаарик. *Bulletin of Science and Practice*, 8(6).
- 33. Юнусов, Х., Аликулов, А., Хакимов, Ш., Салимова, Д. И., & Салимов, И. Х. (2022). Халкаро хамкорлик.
- 34. Азимбаев, Э. Б., Юнусов, Х. Б., & Федотов, Д. Н. (2022). Микроморфология поджелудочной железы у каракульских овец на территории Узбекистана.
- 35. Юнусов, Х. Б., & Гаппаров, А. К. (2022). К вопросу о воспитании самостоятельности студентов.
- 36. Юнусов, Х. Б., Худайбердиев, А. А., & Куванов, Р. Я. (2022). ЯЙЦЕНОСКОСТЬ ПЧЕЛИНЫХ МАТОК И ДИНАМИКА ПЕЧАТНОГО РАСПЛОДА ПРИ ИСПОЛЬЗОВАНИИ ПОДКОРМОК. In Современные проблемы зоотехнии (pp. 206-210).
- 37. Азимбаев, Э. Б., Федотов, Д. Н., & Юнусов, Х. Б. (2022). Топография и морфология поджелудочной железы у каракульских овец в постнатальном онтогенезе.
- 38. Линник, В. Я., Юнусов, Х. Б., Красочко, П. А., Даминов, А. С., & Дегтярик, С. М. (2022). Энциклопедический словарь по ихтиологии и ихтиопатологии.
- 39. Юнусов, Х. Б., Федотов, Д. Н., Васютенок, В. И., Сафаров, А. А., & Комилжонов, С. К. (2022). Основы перепеловодства и повышения яйценоскости птицы.
- 40. Ятусевич, А. И., Юнусов, Х. Б., Норкобилов, Б. Т., Белко, А. А., Федотов, Д. Н., Джаббаров, Ш. А., ... & Йулдашев, Н. Э. (2022). Болезни телят.

- 41. Абдрахманов, И. Д., & Юнусов, Х. Б. (2022). СИСТЕМЫ КОНТРОЛЯ ПОКАЗАТЕЛЕЙ РАБОТЫ АВТОТРАНСПОРТА НА ОТКРЫТЫХ ГОРНЫХ РАБОТАХ.
- 42. Боймуродов, Х. Т., Юнусов, Х. Б., Суяров, С. А., Ахмедов, Я. А., Иззатуллаев, Х. З., & Баратов, К. У. (2022). Распространение и экологические группы гидробионтов в биотопах канала Мирзаарик. *Бюллетень науки и практики*, 8(6), 40-53.
- 43. Ятусевич, А. И., Гавриченко, Н. И., Юнусов, Х. Б., Норкобилов, Б. Т., & Федотов, Д. Н. (2022). Актуальные проблемы и перспективы подготовки ветеринарных фармацевтов в вузах Беларуси и Узбекистана.
- 44. Федотов, Д. Н., Юнусов, Х. Б., Азимбаев, Э. Б., & Ковалев, К. Д. (2022). Морфология поджелудочной железы у новорожденных каракульских ягнят.
- 45. Riyaziddinovich, M. A., Sharifboevich, K. N., & Beknazarovich, Y. X. (2022). Impact of ecology of northern tajikistan on morphological changes of skin cover of pamir ecotype of Yakov.
- 46. Юнусов, Х. А., Султанов, Д. Д., Гаибов, А. Д., Абдувахидов, Б. У., Неъматзода, О., Камолов, А. Н., & Амонов, Ш. Ш. (2021). Возможности дуплексного сканирования в диагностике патологической извитости позвоночной артерии. Здравоохранение Таджикистана, (3), 84-95.
- 47. Yunusov, K. E., Sarymsakov, A. A., Turakulov, F. M., Rashidova, S. S., Yurkshtovich, T. L., Kokhan, A. V., ... & Solomevich, S. O. (2021). Synthesis of selenium nanoparticles stabilized with sodium carboxymethylcellulose for preparation of a long-acting form of prospidine. *Russian Journal of Applied Chemistry*, *94*, 1259-1266.
- 48. Юнусов, Х. Б., Федотов, Д. Н., Лялина, И. Ю., & Чалабоев, Ш. А. (2021). Основы гистохимии.
- 49. Федотов, Д. Н., & Юнусов, Х. Б. (2021). Частная гистология.
- 50. Лялина, И. Ю., & Юнусов, Х. Б. (2021). ИСПОЛЬЗОВАНИЕ МЕТОДА КАПИЛЛЯРОСКОПИИ ДЛЯ ДИАГНОСТИКИ НАРУШЕНИЙ КРОВООБРАЩЕНИЯ. In Экология и здоровье человека (pp. 23-26).
- 51. Yunusov, K. B., & Fiadotau, D. N. (2021). The Influence of the Inhabited Near-Field Chernobyl APS Zone Contaminated with Radio Nuclides on the Histology Thyroid Gland in a Hedgehog.
- 52. Юнусов, Х. Б., & Шаптаков, Э. С. (2021). Убойные качества баранчиков при разных технологиях содержания.
- 53. Джаббаров, Ш. А., Юнусов, Х. Б., Федотов, Д. Н., & Нормурадова, З. Ф. (2021). Современное состояние гельминтофауны кошек.
- 54. Юнусов, Х. Б., Джаббаров, Ш. А., Барановский, А. А., & Федотов, Д. Н. (2021). Ветеринарно-санитарная оценка доброкачественности мяса коз при применении антигельминтных препаратов для борьбы с нематодами желудочно-кишечного тракта.
- 55. Юнусов, Х. Б., Федотов, Д. Н., & Бутаева, И. М. (2021). Международные отношения в области образования между Самаркандским институтом ветеринарной медицины и Витебской государственной академией ветеринарной медицины.
- 56. Камолов, Н. Ш., Мухиддинов, А. Р., Юнусов, Х. Б., & Даминов, А. С. (2021). Экологоморфологическая оценка шкур памирского экотипа яков.
- 57. Ятусевич, А. И., Юнусов, Х. Б., Федотов, Д. Н., Герасимчик, В. А., Норкобилов, Б. Т., Кучинский, М. П., ... & Юрченко, И. С. (2021). Болезни плотоядных и пушных зверей.
- 58. Юнусов, Х. Б., Федотов, Д. Н., & Жуков, А. И. (2021). Морфологические особенности строения органов половой системы самца белогрудого ежа.

- 59. Федотов, Д. Н., Юнусов, Х. Б., & Ковалев, К. Д. (2021). Экологические и морфологические аспекты мониторинга органов гомеостатического обеспечения у енотовидной собаки в зоне отчуждения Чернобыльской АЭС.
- 60. Федотов, Д. Н., & Юнусов, Х. Б. (2021). Основы общей гистологии.
- 61. Ятусевич, А. И., Касперович, И. С., & Юнусов, Х. Б. (2021). Эндопаразитарные системы коз в условиях формирования новых направлений в козоводстве.
- 62. Юнусов, Х. Б., Жуков, А. И., Федотов, Д. Н., & Даминов, А. С. (2021). Морфологическое проявление патологических процессов в селезенке животных.
- 63. Федотов, Д. Н., & Юнусов, Х. Б. (2021). Морфогенез и экстрамедуллярный гемопоэз в селезенке восточноевропейского ежа.
- 64. Камолов, Н. Ш., Мухиддинов, А. Р., Юнусов, Х. Б., & Федотов, Д. Н. (2021). Структурнофункциональное развитие волос памирского экотипа яков северного Таджикистана.
- 65. Юнусов, Х. Б., Шаптаков, Э. С., & Хасанов, Б. (2021). Рост и развитие каракульских ягнят разных типов конституции.
- 66. Усиков, М. А., & Юнусов, Х. Б. (2021). СНИЖЕНИЕ ГАРМОНИЧЕСКИХ ИСКАЖЕНИЙ В ЭЛЕКТРИЧЕСКОЙ СЕТИ ПРИ ПИТАНИИ ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ ЭЛЕКТРОПРИВОДОВ БУРОВЫХ УСТАНОВОК. In Международная научно-практическая конференция «Уральская горная школа-регионам» (pp. 161-162).
- 67. Юнусов, Х. Б., Даминов, А. С., & Самиев, А. Я. (2021). Роль Самаркандского института ветеринарной медицины в подготовке специалистов в области ветеринарии.
- 68. Султанов, Д. Д., Гаибов, А. Д., Неъматзода, О., & Юнусов, Х. А. (2020). Оптимизация хирургического лечения патологической извитости позвоночной артерии. *Вестник Авиценны*, 22(3), 440-445.
- 69. Soltanov, S. K., Yunusov, K. B., Yuldashbayev, Y. A., Zolotarev, S. V., & Baimukanov, D. A. (2020). MODERN GEOCHEMICAL STATE OF THE ENVIRONMENT OF THE ADJACENT TERRITORIES OF THE DOMODEDOVO MOSCOW AIRPORT. *OF GEOLOGY AND TECHNICAL SCIENCES*, 31.
- 70. Голыбин, Ю. А., & Юнусов, Х. Б. (2020). ЭНЕРГОСБЕРЕЖЕНИЕ ПРИ АВТОМАТИЗАЦИИ НАСОСНЫХ СТАНЦИЙ. In *Уральская горная школа-регионам* (pp. 196-197).
- 71. Ярмолович, В. А., Юнусов, Х. Б., Федотов, Д. Н., Даминов, А. С., Дилмуродов, Н. Б., & Кулиев, Б. А. (2020). Морфофункциональная характеристика вымени у коров различной продуктивности.
- 72. Жуков, А. И., Юнусов, Х. Б., Джаббаров, Ш. А., Федотов, Д. Н., Даминов, А. С., & Кучинский, М. П. (2020). Морфологическое проявление патологических процессов в органах животных.
- 73. Федотов, Д. Н., Кучинский, М. П., & Юнусов, Х. Б. (2020). Структурные и морфометрические изменения щитовидной железы белогрудого ежа в эксперименте.
- 74. Федотов, Д. Н., & Юрченко, И. С. (2019). Формообразовательные процессы и морфологические изменения периферических эндокринных желез при адаптивно-приспособительных реакциях енотовидной собаки в зоне снятия антропогенной нагрузки и при действии радиоактивного загрязнения.
- 75. Юнусов, Х. Б., & Силушкин, С. А. (2019). БИОХИМИЧЕСКИЙ СТАТУС ОРГАНИЗМА КУР-НЕСУШЕК ПРИ ДОБАВЛЕНИИ В РАЦИОН НАСТОЯ ИЗ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ. In ПОТЕНЦИАЛ НАУКИ И СОВРЕМЕННОГО ОБРАЗОВАНИЯ В РЕШЕНИИ ПРИОРИТЕТНЫХ ЗАДАЧ АПК И ЛЕСНОГО ХОЗЯЙСТВА (pp. 372-377).

- 76. Юнусов, Х. Б., Силушкин, С. А., & Силушкина, Т. С. (2019). ВЛИЯНИЕ МИКРОКЛИМАТА НА ФИЗИОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ КУР-НЕСУШЕК. In Актуальные проблемы и приоритетные направления животноводства (pp. 116-120).
- 77. Юнусов, Х. Б., & Силушкин, С. А. (2019). Гематологические и биохимические показатели крови кур-несушек при использовании в рационе настоя из лекарственных растений. Іп Актуальные проблемы биологической и химической экологии (pp. 79-84).
- 78. Кононенко, Л. В., Самбурова, Е. В., & Юнусов, Х. Б. (2018). Метапредметность: опыт, реализуемый в жизни. *Химия в школе*, (5), 50-54.
- 79. Кононенко, Л. В., Самбурова, Е. В., & Юнусов, Х. Б. (2018). Метапредметность: опыт, реализуемый в жизни. *Химия в школе*, (5), 50-54.
- 80. Лётова, К. К., Кулагина, Т. В., Калялина, Н. Н., & Юнусов, Х. Б. (2017). Формирование экологической культуры студентов исследованием правовых аспектов влияния социально-экологических факторов на состояние здоровья. *Московский педагогический журнал*, (4), 8-17.
- 81. Юнусов, Х. Б., Лялина, И. Ю., Солтанов, С. Х., Викторов, И. В., & Кривошея, И. В. (2017). ЭКОЛОГИЧЕСКАЯ ОЦЕНКА ВЛИЯНИЯ АВТОТРАНСПОРТА НА СРЕДУ ОБИТАНИЯ ГИДРОБИОНТОВ. In *Нетрадиционные природные ресурсы, инновационные технологии и продукты* (pp. 166-169).
- 82. Юнусов, Х. Б., & Лялина, И. Ю. (2017). Необходимость формирования и реализации специальных компетенций в подготовке бакалавров педагогического направления. In *Научно-методические подходы к формированию образовательных программ подготовки кадров в современных условиях* (pp. 211-213).
- 83. ЛЁТОВА, К., ЛЯЛИНА, И., & ЮНУСОВ, Х. (2017). Вопросы формирования экологической культуры студентов в условиях Использования правовых аспектов экологиической деятельности. In Актуальные проблемы методики преподавания биологии, химии и экологии в школе и вузе (pp. 219-221).
- 84. Юнусов, Х. Б., Черников, В. А., Лялина, И. Ю., Солтанов, С. Х., & Викторов, И. О. (2017). Экологическая оценка влияния антропогенного фактора на состояние поверхностных вод и очистка воды от загрязнений. *АгроЭкоИнфо*, (1), 8-8.
- 85. Беляева, А. В., Юнусов, Х. Б., & Лялина, И. Ю. (2017). Научно-методический подход к организации комфортной образовательной среды в вузе для лиц с ограниченными возможностями здоровья. In *Научно-методические подходы к формированию образовательных программ подготовки кадров в современных условиях* (рр. 47-50).
- 86. Мануйлов, В. М., Аверин, А. А., Куршин, Д. А., Соколов, Д. С., Медведева, И. В., Молоканова, Ю. П., & Юнусов, Х. Б. (2017). Анализ эффективности кожных антисептиков, применяемых для предотвращения нозокомиальных инфекций. *Инфекция и иммунитет*, (S), 331-331.
- 87. Черников, В. А., & Юнусов, Х. Б. (2017). Оценка экологического состояния пресных вод и современные эффективные методы ее очистки от загрязнений. *АгроЭкоИнфо*, (1), 7-7.
- 88. Zakharov, S. L., Yunusov, K. B., & Levin, S. N. (2016). Material for protection of oil products against evaporation. *Chemical and Petroleum Engineering*, 52, 69-70.
- 89. Yunusov, K. E., Sarymsakov, A. A., & Rashidova, S. S. (2016). Problems and prospects application of silver nanoparticles in medical practice. *Nanosci Nanotechnol*, 10(2), 83-97.
- 90. Юнусов, Х. Б., Дроганова, Т. С., Поликарпова, Л. В., & Лялина, И. Ю. (2016). Влияние загрязнения водной среды на изменения ферментативной активности пресноводного моллюска живородка речная. *АгроЭкоИнфо*, (4), 6-6.

- 91. Лётова, К. К., Юнусова, Т. Н., Лялина, И. Ю., & Юнусов, Х. Б. (2016). Межпредметная связь как показатель повышения эффективности обучения при изучении правовых основ общей экологии. *Педагогическое образование и наука*, (6), 16-19.
- 92. Викторов, И. О., Хайдаров, Н. Х., Лялина, И. Ю., & Юнусов, Х. Б. (2016). Влияние автотранспорта на экологическую ситуацию в городах Московской области. Географическая среда и живые системы, (3), 123-134.
- 93. Балакин, Ю. А., Юнусов, Х. Б., Хаулин, А. Н., & Захаров, С. Л. (2016). НОВАЯ ФИЗИКО-ХИМИЧЕСКАЯ МОДЕЛЬ КРИСТАЛЛИЗАЦИИ С ВНЕШНИМ ВОЗДЕЙСТВИЕМ НА ЗАТВЕРДЕВАЮЩИЙ МЕТАЛЛ (СООБЩЕНИЕ 3). Географическая среда и живые системы, (3), 114-122.
- 94. Солтанов, С. Х., Юнусов, Х. Б., Кривошея, И. В., & Лялина, И. Ю. (2016). Экологическая биобезопасность на авиационном транспорте. In *Актуальные проблемы биологической и химической экологии* (pp. 311-314).
- 95. Штакк, Е. А., Юнусов, Х. Б., Лялина, И. Ю., & Беляева, А. В. (2016). ЗДОРОВЬЕ И ОБРАЗОВАНИЕ МОЛОДЁЖИ В КОНТЕКСТЕ УСТОЙЧИВОГО ОБРАЗА ЖИЗНИ. In ПЕРСПЕКТИВЫ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ (pp. 214-218).
- 96. Солтанов, С. Х., Кривошея, И. В., Позднякова, Д. В., & Юнусов, Х. Б. (2016). Негативные экологические последствия эмиссий авиадвигателей воздушных судов гражданской авиации московского авиационного узла. *UNTRADITIONAL NATURAL RESOURCES*, *INNOVATION TECHNOLOGIES AND PRODUCTS*, 137.
- 97. Кривошея, И. В., Солтанов, С. Х., Лялина, И. Ю., & Юнусов, Х. Б. (2016). ИСПОЛЬЗОВАНИЕ СИСТЕМЫ РЕКУПЕРАЦИИ ПАРОВ НА АВТОЗАПРАВОЧНЫХ КОМПЛЕКСАХ. Вестник Московского государственного областного университета. Серия: Естественные науки, (2), 153-157.
- 98. Кулагина, Т. В., Лялина, И. Ю., & Юнусов, Х. Б. (2016). ПОВЕДЕНЧЕСКАЯ АДАПТАЦИЯ ПОДРОСТКОВ И СОХРАНЕНИЕ ФИЗИЧЕСКОГО И ПСИХИЧЕСКОГО ЗДОРОВЬЯ. UNTRADITIONAL NATURAL RESOURCES, INNOVATION TECHNOLOGIES AND PRODUCTS, 200.
- 99. Балакин, Ю. А., Юнусов, Х. Б., & Хаулин, А. Н. (2016). Повышение технологичности жаропрочной стали комбинированной обработкой. *Химическое и нефтегазовое машиностроение*, (10), 42-44.
- 100. Кулагина, Т. В., & Юнусов, Х. Б. (2016). Влияние искусственных сладких напитков на здоровье подростков. In *Актуальные проблемы биологической и химической экологии* (pp. 307-311).
- 101. Юнусов, Х. Б., & Лялина, И. Ю. (2016). Современные вопросы водоочистки и использование бароэлектрохимического метода. *АгроЭкоИнфо*, (4), 8-8.
- 102. Кривошея, И. В., Солтанов, С. Х., & Юнусов, Х. Б. (2016). Применение установки рекуперации нефтепродуктов, основанной на адсорбционных свойствах активированного угля. Іп Актуальные проблемы биологической и химической экологии (pp. 304-307).
- 103. Солтанов, С. Х., & Юнусов, Х. Б. (2016). Деградация окружающей среды вследствие утечки технической жидкости «SkyKem» при наземном обслуживании воздушных судов гражданской авиации. Географическая среда и живые системы, (1), 64-69.
- 104. Юнусов, Х. Б., Солтанов, С. Х., Лялина, И. Ю., & Кривошея, И. В. (2016). Экологическое состояние водных источников и особенности экологической и биологической безопасности. *АгроЭкоИнфо*, (4), 11-11.

- 105. Гаибов, А. Д., Кахоров, А. З., Садриев, О. Н., & Юнусов, Х. А. (2015). Хирургическое лечение синдрома верхней грудной апертуры. *Вестник хирургии имени ИИ Грекова*, *174*(1), 78-83.
- 106. Юнусов, Х. Б., Захаров, С. Л., Зверев, О. М., Солтанов, С. Х., & Кривошея, И. В. (2015). УЛУЧШЕНИЕ ЭКОЛОГИЧЕСКИХ ПАРАМЕТРОВ СТОЧНЫХ ВОД НА ТЕКСТИЛЬНОМ ПРЕДПРИЯТИИ. In *Нетрадиционные природные ресурсы, инновационные технологии и продукты* (pp. 13-17).
- 107. Юнусов, Х. Б., & Захаров, С. Л. (2015). Особенности экологического образования при изучении процессов и аппаратов химических технологий. *Московский педагогический журнал*, (1), 108-112.
- 108. Балакин, Ю. А., Гладков, М. И., Юнусов, Х. Б., & Захаров, С. Л. (2015). Математическое моделирование влияния вибрации на рафинирование расплавов металлов. *Географическая среда и живые системы*, (4), 51-58.
- 109. Бирюков, А. Л., Захаров, С. Л., Юнусов, Х. Б., & Алексеенков, С. А. (2015). Водоподготовка, анализ и рекомендации. Природообустройство, (1), 19-22.
- 110. Кулагина, Т. В., Лялина, И. Ю., & Юнусов, Х. Б. (2015). Изучение влияния антропогенных экологических факторов на здоровье подростков Московской области. *ISBN 978 5 7017 2499-8*© *Министерство экологии и природопользования Московской области, 2015*© *Московский государственный областной университет, 2015*, 216.
- 111. ЮНУСОВА, Т., Лётова, К. К., & ЮНУСОВ, Х. (2015). Экологические проблемы окружающей среды и правовые основы работы с экологически опасными веществами и отходами. In *Проблемы экологии Московской области* (pp. 72-74).
- 112. Кривошея, И. В., Солтанов, С. Х., Лялина, И. Ю., & Юнусов, Х. Б. (2015). Применение фиторемедиации как одного из эффективных и перспективных методов очистки почв от тяжелых металлов на территориях, прилегающих к аэродромам и автозаправочным станциям. Министерство экологии и природопользования Московской области, 84.
- 113. Захаров, С. Л., Юнусов, Х. Б., & Алексеенков, С. А. (2014). Интенсификация процесса предочистки. Естественные и технические науки, (6), 118-122.
- 114. Балакин, Ю. А., Захаров, С. Л., & Юнусов, Х. Б. (2014). Разработка новой теории внешних воздействий на процессы в конденсированных средах. Вестник Государственного университета просвещения. Серия: Физика-Математика, (4), 119-123.
- 115. Захаров, С. Л., Юнусов, Х. Б., Смирнов, В. С., & Телюк, А. Ю. (2014). Методология интенсификации надежности работы кранов в схемах очистки воды. *Естественные и технические науки*, (7), 75-76.
- 116. Юнусов, Х. Б., Захаров, С. Л., & Терпугов, Г. В. (2014). АНАЛИЗ ПРОБЛЕМ ОБЕСПЕЧЕНИЯ ЭКОЛОГИЧЕСКОЙ НАДЕЖНОСТИ ИСТОЧНИКОВ ВОДОСНАБЖЕНИЯ. Географическая среда и живые системы, (5), 107-112.
- 117. Хомутова, И. В., & Юнусов, Х. Б. (2014). Энергетика и окружающая среда. *География в школе*, (8), 44-49.
- 118. Юнусов, Х. Б., Захаров, С. Л., Бугримов, А. Л., & Балакин, Ю. А. (2014). ФИЗИКО'ХИМИЧЕСКИЕ АСПЕКТЫ РАЗДЕЛЕНИЯ КОМПОНЕНТОВ ЖИДКИХ РАСТВОРОВ ОБРАТНЫМ ОСМОСОМ. Географическая среда и живые системы, (5), 86-91.
- 119. Юнусов, Х. Б., & Гераскина, Г. В. (2014). Параметрическое загрязнение окружающей среды как тема для самостоятельной работы студентов при изучении экологии. *Географическая среда и живые системы*, (3), 86-92.