Получение Азотно-Кальциевых Удобрений Из Фильтратов Кислотного Разложения Минерализационной Массы

Д. М. Таваккалова ¹, К. А. Бакиева ², О. О. Олимова ³, М. М. Собиров ⁴

Аннотация: В статье описан метод извлечения нитрата кальция фильтрованием с целью получения удобрений с различными питательными веществами из фосфорно-азотнокислой каши, разлагающей фосфатное сырье при повышенном содержании кислоты. Изучена возможность получения азотно-кальциевых жидких удобрений путем добавления в фильтраты азотных реагентов.

Ключевые слова: минеральное удобрение, минерализованная масса, термоконцентрат, фосфорит, фосфорно-азотнокислая каша, кальциевая селитра, азотно-кальциевые жидкие удобрения, фильтрат, дифференциально-фотометрический метод, вытяжной метод, комплексонометрический метод

Входить. Нарастающие экологические проблемы на Земле, особенно повышение температуры воздуха и сокращение ресурсов пахотных земель и запасов воды в результате засух, увеличивают потребность в производстве новых удобрений в глобальном масштабе. Одной из важных задач отрасли производства удобрений является производство минеральных удобрений с необходимым уровнем питательных веществ для выращивания качественных и обильных урожаев сельскохозяйственных культур. Здесь, помимо обеспечения сельского хозяйства минеральными удобрениями на высоком уровне эффективности, одной из актуальных проблем является использование отходов при их производстве, а также внедрение безотходных технологий.

Объект и методы исследования. Отходы комбината центрального Кызылкума - минерализованная масса и фосфорит, промытый и обожженный термоконцентрат разлагались азотной кислотой с получением фосфорно-азотнокислой каши. При кислотном разложении минерализованной массы температура повышается до 50-80 ОС. Процесс проводили в трубчатом стеклянном реакторе при непрерывном перемешивании в течение 30-45 минут. Некоторое количество азотной кислоты полностью расходовалось за 3-8 минут на разложение термоконцентрата и минерализованной массы.

В реакторе ускоряется процесс кислотного разложения фосфоритов. Количество кальцита в минерализованной массе в 4-6 раз больше, чем в термоконцентрате, процесс протекает с образованием пузырьков, вызывающих дискомфорт в реакторе. Фосфатно-азотную суспензию получали после разложения фосфатного сырья в условиях высоких кислотных стандартов.

Нитрат кальция, содержащийся в каше, отфильтровывали и использовали для приготовления удобрений с различными питательными веществами. Чтобы предотвратить потерю оксида фосфора при фильтрации, его нейтрализовали газообразным аммиаком до достижения водородного показателья pH=5,0-5,5. Взвесь фосфорной кислоты, доведенную до pH=5,0-5,5, разбавляли водой в соотношении 1:1 и фильтровали для выделения нитрата кальция.

Фильтрат, образующийся в процессе первичной фильтрации, использовался как сырье для получения азотно-кальциевых удобрений. Для дальнейшего снижения количества нитрата кальция в полученном фосфоконцентрате фосфоконцентрат повторно разводили водой в соотношении 1:1 и фильтровали (это вторая фильтрация). Фильтрат, образовавшийся в

0

^{1,2,3,4} Наманганский государственный технический университет, Узбекистан

процессе рефильтрации, использовали для фильтрации нитрата кальция из свежеполученной суспензии нитрата фосфата.

Фильтраты, полученные при фильтровании, подвергали химическому анализу. Также путем добавления к фильтратам азотных реагентов изучена возможность получения жидких удобрений с азотно-кальциевым соотношением 1:1 и 2:1.

Суммарное значение азота [1; 2] определяли по методике, приведенной в литературе. Этот метод основан на восстановлении нитратного азота до аммиачного с помощью сплава Деварда с последующим удалением аммиака и его титрометрическим определением. Азот аммиачный [1; 3] определяют по методике, приведенной в литературе. Этот метод основан на окислении аммиачного азота до элементарного хлорамином в присутствии бромистого калия и фосфатного буферного раствора с рН 6,7; Количество избытка хлорамина определяют йодометрическим методом.

Азот в форме нитрата [4] определяли по методике, приведенной в литературе. Метод основан на восстановлении нитратного азота в кислой среде молибдатом аммония в качестве катализатора с использованием раствора сернокислого железа (II) с последующим титрованием избыточного количества сернокислого железа (II) раствором перманганата калия.

Определение фосфатов проводили дифференциально-фотометрическим методом [1]. Метод основан на образовании желтого фосфор-ванадий-молибденового комплекса и фотометрическом измерении оптической плотности этого комплекса при длине волны λ = 440 нм по сравнению с раствором сравнения, содержащим определенное количество P_2O_5 . Общие фосфаты экстрагировали азотной кислотой, растворимые фосфаты экстрагировали лимонной кислотой и раствором Трилона E_5 , водорастворимые фосфаты экстрагировали водой.

Кальций и магний в полученных продуктах и сырье определяли комплексонометрическим методом [1, 5-6]. Метод основан на изменении цвета индикатора в результате взаимодействия ионов кальция и магния с раствором трилона Б. Сульфаты определяли вытягивающим (весовым) методом [7-8]. Этот метод основан на осаждении сульфатов хлоридом бария в кислой среде и взвешивании осадка. Содержание железа и алюминия определяли комплексонометрическим методом [1, 8-9].

Результаты и их обсуждение. Первый процесс фильтрации проводили после нейтрализации фосфатно-нитратной суспензии, полученной из минерализованной массы, аммиаком до 5,0-5,5. При этом фосфорно-азотнокислую кашу разбавляли добавлением воды в соотношении 1:1 и проводили 1-й процесс фильтрации на фильтр-прессе. Изучена зависимость химического состава полученного фильтрата от уровня кислоты (табл. 1).

Таблица 1 Разведите фосфорно-нитратную кашу водой в соотношении 1:1. Химический состав фильтрата, полученного после 1-й фильтрации, %

соотношение	NT	D.O.	C 0	C (NO.)	11.0
азотной	N	P_2O_5	CaO	$Ca(NO_3)_2$	H_2O
кислоты					
30	2,86	-	5,71	16,74	83,26
40	3,31	-	6,62	19,39	80,61
50	3,66	-	7,31	21,42	78,58
60	3,93	-	7,86	23,01	76,99
70	4,15	-	8,31	24,33	75,67
80	4,33	0,01	8,67	25,4	74,6
90	4,49	0,02	8,98	26,29	73,71
100	4,62	0,02	9,24	27,06	72,94

При стехиометрической норме азотной кислоты 60% в фильтрате содержится азота - 3,93%, кальция - 7,86%. Содержание соли (нитрата кальция) в растворе 23,01% и воды 76,99%.

Концентрация нитрата кальция в фильтратах, полученных при разложении минерализованной массы при высоких стехиометрических показателях до 24,33-27,06%, показывает возможность их непосредственного использования в качестве жидкой нитрата кальция. Также можно получить концентрированные азотно-кальциевые жидкие удобрения, добавив в них мочевину.

После 1-й фильтрации фосфатно-нитратную суспензию повторно разбавляли водой в соотношении 1:1 и фильтровали 2-й раз с целью дальнейшей очистки оставшегося во влажном остатке нитрата кальция, то есть увеличения процентного содержания фосфора в полученном фосфоконцентрате. Полученный фильтрат подвергли химическому анализу (табл. 2). При увеличении стехиометрической нормы азотной кислоты в фильтрате, полученном после 2-й фильтрации, с 30 до 100 %, содержание азота в фильтратах увеличивается с 0,61 до 1,06 %, кальция с 1,22 до 2,13 %, концентрации нитрата кальция с 3,58 до 6,25 %.

Таблица 2 Влажный остаток разбавить водой в соотношении 1:1. Химический состав фильтрата (оборотного раствора), полученного после 2-й фильтрации, %

соотношение азотной кислоты	N	P ₂ O ₅	CaO	Ca(NO ₃) ₂	H ₂ O
30	0,61	-	1,22	3,58	96,42
40	0,72	-	1,45	4,25	95,75
50	0,81	-	1,63	4,78	95,22
60	0,88	-	1,76	5,17	94,83
70	0,94	-	1,88	5,52	94,48
80	0,99	-	1,99	5,82	94,18
90	1,04	-	2,07	6,08	93,92
100	1,06	-	2,13	6,25	93,75

Содержание воды в фильтрате составляет от 93,75 до 96,42%. Известно, что растворимость нитрата кальция в воде (в г на 100 г) составляет 128,8 г (при 20 ос). Благодаря высокой растворимости нитрата кальция в воде использование фильтрата, полученного при 2-й фильтрации, в качестве циркуляционного раствора приводит к высокой эффективности.

Жидкие азотно-кальциевые удобрения получали в лабораторных условиях на основе фильтрата, полученного при первой фильтрации 76% раствора мочевины и фосфорно-азотнокислой каши. При этом за основу брали соотношения азота и кальция 1:1 и 2:1 и изучали зависимость химического состава образцов жидких удобрений от стехиометрической нормы азотной кислоты и соотношения азота и кальция (табл. 3).

Таблица 3 Зависимость химического состава карбамида (76%) и азотно-кальциевых жидких удобрений, полученных на основе 1-го фильтрата, от стехиометрической нормы азотной кислоты, %

N:CaO	N	CaO	Ca(NO ₃) ₂	(NH ₂) ₂ CO	H ₂ O		
стехиометрическое соотношение азотной кислоты составляет 60%							
1:1	7,06	7,06	20,68	7,68	71,63		
2:1	11,76	5,88	17,21	19,17	63,63		
стех	стехиометрическое соотношение азотной кислоты составляет 70%						
1:1	7,43	7,43	21,74	8,08	70,17		
2:1	12,25	6,12	17,93	19,98	62,08		
стехиометрическое соотношение азотной кислоты составляет 80%							
1:1	7,71	7,71	22,59	8,39	69,01		
2:1	12,64	6,32	18,51	20,61	60,88		
стехиометрическое соотношение азотной кислоты составляет 90%							

1:1	7,96	7,96	23,30	8,65	68,05		
2:1	12,96	6,48	18,98	21,14	59,88		
стехиометрическое соотношение азотной кислоты составляет 100%							
1:1	8,16	8,16	23,90	8,87	67,23		
2:1	13,23	6,61	19,38	21,58	59,05		

При увеличении стехиометрической нормы азотной кислоты с 60 до 100 % и соотношении азота и кальция, равном 2:1, количество азота в жидких удобрениях увеличивается с 11,76 до 13,23 %, а количество кальция — с 5,88 до 6,61 %. Содержание солей - нитрата кальция в жидком азотно-кальциевом удобрении составляет 17,21-19,38%, карбамида - 19,17-21,58%. Количество воды в пробах удобрений составляет 59-72%. Это делает его реологические свойства очень важными для удовлетворения требований сельского хозяйства.

Краткое содержание. Вышеуказанные удобрения можно вносить под сельскохозяйственные культуры не только из корней, но и из листьев. В этом случае урожайность сельскохозяйственных культур увеличивается на 3-5ц/га. Также расширятся возможности получения комплексных удобрений с высо-кой эффективностью из фосфоконцентрата, образующегося в процессе филь-трации минерализованной массы азотной кислотой.

Литературы

- 1. Шеркузиев Д.Ш., Реймов А.М. Жидкие комплексные удобрения на основе раствора карбамида и аммиачной селитры // Материалы Республиканской научно-практической конференции «Проблемы развития малого бизнеса, основанного на научных достижениях и инновационных технологиях, взглядом молодых ученых». 3 марта 2011г. Ташкент. 2011. С. 234 235.
- 2. Методы анализа фосфатного сырья, фосфорных и комплексных удобрений, кормовых фосфатов. // Винник М.М., Ербанова Л.Н. и др. М.: Химия. 1975г. 218 с.
- 3. ГОСТ 30181.4-94. Удобрения минеральные. // Метод определения суммарной массовой доли азота, содержащегося в сложных удобрениях и селитрах в аммонийной и нитратной формах (метод Деварда). М.: ИПК // Издательство стандартов, 1996г. 8 с.
- 4. ГОСТ 30181.8-94. Удобрения минеральные. // Метод определения массовой доли аммонийного азота в сложных удобрениях (хлораминовый метод). М.: ИПК Издательство стандартов, 1996г. 6 с.
- 5. ГОСТ 30181.3-94. Удобрения минеральные. //Метод определения массовой доли азота в удобрениях, содержащих азот в нитратной форме. М.: ИПК Издательство стандартов, 1996г. 6 с.
- 6. Стифатов Б.М., Рублинецкая Ю.В. Пламенная фотометрия // Метод. указ. к лаб. работе. Самара; Самар. гос. техн. ун-т, 2013. 13 с.
- 7. ГОСТ 24596.4-81. Фосфаты кормовые. // Методы определения кальция. М.: ИПК Издательство стандартов, 2004г. 3 с.
- 8. ГОСТ 24024.12-81. Фосфор и неорганические соединения фосфора. // Методы определения сульфатов. М.: Издательство стандартов, 1981г. 4с.
- 9. ГОСТ 22275-90. Концентрат апатитовый. // Технические условия. М.: Издательство стандартов, 1991г. 18 с.